
SRG-76-30-8-14 eliminating K6,10
#generating all possible lengths of cycles on 20 vertices,
ascending order
types=[]
for k in range(1,7):
 d=[0]*k
 m=int(11-3*k/2)
 pp=m^(k-1)
 for i in range(pp):
 ii=i
 d[k-1]=20-3*k
 for j in range(k-1):
 d[j]=int(ii)%int(m)
 ii=ii//m
 d[k-1]-=(k-j)*d[j]
 if d[k-1]>=0:
 ii=3
 res=[]
 for j in range(k):
 ii+=d[j]
 res.append(ii)
 types.append(res)

#list of alternating 0s and 1s of given length
def alt_gen(k):
 alt = [1]*k
 for i in range((k-1)/2+1):
 alt[2*i]=0
 return alt

#appending some info to res: pair of numbers of edges in the two
components, alternating sequence with duplications at given
positions
#dups is a non-decreasing sequence of indexes, may be empty
def duplicate(res,dups,nn):
 if nn<=0:
 return 0
 alt = alt_gen(nn)
 for i in range(len(dups)):
 alt.insert(i+dups[i],alt[i+dups[i]])
 x=0 #counter for consecutive 0s (cyclic)
 y=0 #1s
 for i in range(len(alt)-1):
 if alt[i]==0 and alt[i+1]==0:

 x+=1
 if alt[i]==1 and alt[i+1]==1:
 y+=1
 if alt[0]==0 and alt[len(alt)-1]==0:
 x+=1
 if alt[0]==1 and alt[len(alt)-1]==1:
 y+=1
 if x>3 or y>3:
 return 0 #no need of 3 or more
 res.append([x,y])
 res.append(alt)
 if x!=y: #isomorphic if x=y, otherwise we also add with 0<->1
interchanged
 alt=[1-i for i in alt]
 res.append([y,x])
 res.append(alt)
 return 0

#generates all (up to cyclic translation) lists of 0s and 1s of
length n with no more than three cyclic occurences of 00 and 11,
each would correspond to an edge in H_1 or H_2
#have to call duplicate at all possible "dups" sets, up to cyclic
translation
#let 0=g_0<=g_1<=...<=g_k be the positions to be duplicated
#the positions have values in 0,...,n-k-2
#can assume that the first index g_0=0, and the distance between
first and second g_1-g_0 is smallest cyclically, i.e. g_{j+1}-
g_j>=g_1-g_0=g_1
#g_k<=n-k-2 if g_1=0
#g_k<=n-k-1-g_1 if g_1>=1
#so we introduce gg=min(1,g_1)
#then g_k<=n-k-2+gg-g_1, g_{k-1}<=n-k-2+gg-2*g_1, etc.
#g_1<=n-k-2+gg-k*g_1, so g_1<=(n-k-1)/(k+1)
#more than six elements in dups will clearly return empty result,
so k<=5
def enum_gen(n):
 res = []
 duplicate(res,[],n)
 duplicate(res,[0],n-1)
 for g1 in range(0,(n-2)/2+1):
 duplicate(res,[0,g1],n-2)
 for g1 in range(0,(n-3)/3+1):
 gg=min(1,g1)
 for g2 in range(2*g1,n-4+gg-g1):
 duplicate(res,[0,g1,g2],n-3)
 for g1 in range(0,(n-4)/4+1):
 gg=min(1,g1)
 for g2 in range(2*g1,n-5+gg-2*g1):

 for g3 in range(g2+g1,n-5+gg-g1):
 duplicate(res,[0,g1,g2,g3],n-4)
 for g1 in range(0,(n-5)/5+1):
 gg=min(1,g1)
 for g2 in range(2*g1,n-6+gg-3*g1):
 for g3 in range(g2+g1,n-6+gg-2*g1):
 for g4 in range(g3+g1,n-6+gg-g1):
 duplicate(res,[0,g1,g2,g3,g4],n-5)
 for g1 in range(0,(n-6)/6+1):
 gg=min(1,g1)
 for g2 in range(2*g1,n-7+gg-4*g1):
 for g3 in range(g2+g1,n-7+gg-3*g1):
 for g4 in range(g3+g1,n-7+gg-2*g1):
 for g5 in range(g4+g1,n-7+gg-g1):
 duplicate(res,[0,g1,g2,g3,g4,g5],n-6)
 return res

eg = [enum_gen(n) for n in range(3,21)]

#srg(76,30,8,14)
p=-4/15
q=7/45

#Gram matrix of a given double list
def GMat(A):
 n = len(A)
 B = Matrix([[q+(p-q)*A[i][j] for j in range(n)] for i in
range(n)])
 for i in range(n):
 B[i,i]=1
 return B

#check if positive definite
def mineig(A):
 sp = A.eigenvalues()
 mv = sp[0]
 for v in sp:
 if v<mv:
 mv=v
 return mv

#double list of incidence of given type and enumeration, ex:[4,16],
[[0,1,..],[1,0,...]]
def ttm(type,colors):
 res = [[0 for i in range(20)] for j in range(20)]
 n = len(type)
 ind = [0] #indexes for blocks defined by type
 k = 0

 for i in type:
 k += i
 ind.append(k)
 #generating enumeration
 color = [0]*20
 for i in range(n):
 for j in range(len(colors[i])):
 color[ind[i]+j]=colors[i][j]
 #all non-edges between diff colors
 for i in range(19):
 for j in range(i+1,20):
 if color[i]!=color[j]:
 res[i][j]=1
 res[j][i]=1
 #inverting edges between H_1 and H_2
 for i in range(n):
 j1 = ind[i]
 j2 = ind[i+1]-1
 res[j1][j2]=1-res[j1][j2]
 res[j2][j1]=1-res[j2][j1]
 for j in range(j1,j2):
 res[j][j+1]=1-res[j][j+1]
 res[j+1][j]=1-res[j+1][j]
 return res

#main loop
for type in types:
 n = len(type)
 nn = [len(eg[k-3])/2 for k in type]
 pp = 1
 for a in nn:
 pp *= a
 print "type ", type, " cases:", pp
 ii = [0]*n
 fe = 0
 fr = 0
 fp = 0
 for i in range(pp):
 k = i
 for j in range(n):
 ii[j] = int(k) % int(nn[j])
 k = k//nn[j]
 x = 0
 y = 0
 for j in range(n):
 x += eg[type[j]-3][2*ii[j]][0]
 y += eg[type[j]-3][2*ii[j]][1]

 if x>3 or y>3 or x!=y:
 fe += 1
 else:
 M = GMat(ttm(type,[eg[type[j]-3][2*ii[j]+1] for j in
range(n)]))
 r = M.rank()
 if r>16:
 fr += 1
 else:
 mev = mineig(M)
 if mev<0:
 fp += 1
 else:
 print "through: ",type,[eg[type[j]-3]
[2*ii[j]+1] for j in range(n)],r,mev
 print "failed by edges:", fe
 print "failed by rank:", fr
 print "failed by posdef:", fp

################################

#checking double lists of incidence of given type and enumeration,
with all possibilities of adding 21st vertex, up to 3 edges to each
half
def min_rank_ttma(type,colors):
 res = [[0 for i in range(21)] for j in range(21)]
 n = len(type)
 ind = [0] #indexes for blocks defined by type
 k = 0
 for i in type:
 k += i
 ind.append(k)
 #generating enumeration
 color = [0]*20
 for i in range(n):
 for j in range(len(colors[i])):
 color[ind[i]+j]=colors[i][j]
 #all non-edges between diff colors
 for i in range(19):
 for j in range(i+1,20):
 if color[i]!=color[j]:
 res[i][j]=1
 res[j][i]=1
 #inverting edges between H_1 and H_2
 for i in range(n):
 j1 = ind[i]
 j2 = ind[i+1]-1

 res[j1][j2]=1-res[j1][j2]
 res[j2][j1]=1-res[j2][j1]
 for j in range(j1,j2):
 res[j][j+1]=1-res[j][j+1]
 res[j+1][j]=1-res[j+1][j]
 #no edges
 minr = GMat(res).rank()
 #one edge
 for i in range(10):
 for j in range(10,20):
 for ic in range(20):
 res[20][ic]=0
 res[ic][20]=0
 res[20][i]=1
 res[i][20]=1
 res[20][j]=1
 res[j][20]=1
 rr = GMat(res).rank()
 if rr<minr:
 minr=rr
 if rr==16:
 print type,colors,i,j
 #two edges
 for i1 in range(9):
 for i2 in range(i1+1,10):
 for j1 in range(10,19):
 for j2 in range(j1+1,20):
 for ic in range(20):
 res[20][ic]=0
 res[ic][20]=0
 res[20][i1]=1
 res[i1][20]=1
 res[20][j1]=1
 res[j1][20]=1
 res[20][i2]=1
 res[i2][20]=1
 res[20][j2]=1
 res[j2][20]=1
 rr = GMat(res).rank()
 if rr<minr:
 minr=rr
 if rr==16:
 print type,colors,i1,i2,j1,j2
 #three edges
 for i1 in range(8):
 for i2 in range(i1+1,9):
 for i3 in range(i2+1,10):
 for j1 in range(10,18):

 for j2 in range(j1+1,19):
 for j3 in range(j2+1,20):
 for ic in range(20):
 res[20][ic]=0
 res[ic][20]=0
 res[20][i1]=1
 res[i1][20]=1
 res[20][j1]=1
 res[j1][20]=1
 res[20][i2]=1
 res[i2][20]=1
 res[20][j2]=1
 res[j2][20]=1
 res[20][i3]=1
 res[i3][20]=1
 res[20][j3]=1
 res[j3][20]=1
 rr = GMat(res).rank()
 if rr<minr:
 minr=rr
 if rr==16:
 print
type,colors,i1,i2,i3,j1,j2,j3
 return minr

print min_rank_ttma([4,4,4,4,4],[[0,1,0,1],[0,1,0,1],[0,1,0,1],
[0,1,0,1],[0,1,0,1]])
print min_rank_ttma([4,4,4,4,4],[[0,0,1,1],[0,1,0,1],[0,1,0,1],
[0,1,0,1],[0,1,0,1]])
print min_rank_ttma([4,4,4,4,4],[[0,0,1,1],[0,0,1,1],[0,1,0,1],
[0,1,0,1],[0,1,0,1]])
print min_rank_ttma([4,4,4,4,4],[[0,0,1,1],[0,0,1,1],[0,0,1,1],
[0,1,0,1],[0,1,0,1]])

type [20] cases: 869
failed by edges: 234
failed by rank: 635
failed by posdef: 0
type [3, 17] cases: 1896
failed by edges: 1446
failed by rank: 450
failed by posdef: 0
type [4, 16] cases: 1076
failed by edges: 764
failed by rank: 312
failed by posdef: 0
type [5, 15] cases: 1040

failed by edges: 780
failed by rank: 260
failed by posdef: 0
type [6, 14] cases: 828
failed by edges: 595
failed by rank: 233
failed by posdef: 0
type [7, 13] cases: 1300
failed by edges: 1096
failed by rank: 204
failed by posdef: 0
type [8, 12] cases: 792
failed by edges: 640
failed by rank: 152
failed by posdef: 0
type [9, 11] cases: 1392
failed by edges: 1208
failed by rank: 184
failed by posdef: 0
type [10, 10] cases: 900
failed by edges: 755
failed by rank: 145
failed by posdef: 0
type [3, 3, 14] cases: 2208
failed by edges: 2078
failed by rank: 130
failed by posdef: 0
type [4, 4, 12] cases: 1056
failed by edges: 896
failed by rank: 160
failed by posdef: 0
type [5, 5, 10] cases: 480
failed by edges: 430
failed by rank: 50
failed by posdef: 0
type [6, 6, 8] cases: 432
failed by edges: 345
failed by rank: 87
failed by posdef: 0
type [3, 4, 13] cases: 2080
failed by edges: 1890
failed by rank: 190
failed by posdef: 0
type [4, 5, 11] cases: 928
failed by edges: 818
failed by rank: 110
failed by posdef: 0
type [5, 6, 9] cases: 576
failed by edges: 500
failed by rank: 76

failed by posdef: 0
type [6, 7, 7] cases: 600
failed by edges: 528
failed by rank: 72
failed by posdef: 0
type [3, 5, 12] cases: 1056
failed by edges: 980
failed by rank: 76
failed by posdef: 0
type [4, 6, 10] cases: 720
failed by edges: 601
failed by rank: 119
failed by posdef: 0
type [5, 7, 8] cases: 480
failed by edges: 428
failed by rank: 52
failed by posdef: 0
type [3, 6, 11] cases: 1392
failed by edges: 1264
failed by rank: 128
failed by posdef: 0
type [4, 7, 9] cases: 960
failed by edges: 864
failed by rank: 96
failed by posdef: 0
type [3, 7, 10] cases: 1200
failed by edges: 1128
failed by rank: 72
failed by posdef: 0
type [4, 8, 8] cases: 576
failed by edges: 486
failed by rank: 90
failed by posdef: 0
type [3, 8, 9] cases: 1152
failed by edges: 1068
failed by rank: 84
failed by posdef: 0
type [3, 3, 3, 11] cases: 3712
failed by edges: 3630
failed by rank: 82
failed by posdef: 0
type [4, 4, 4, 8] cases: 768
failed by edges: 670
failed by rank: 98
failed by posdef: 0
type [5, 5, 5, 5] cases: 256
failed by edges: 242
failed by rank: 14
failed by posdef: 0
type [3, 4, 4, 9] cases: 1536

failed by edges: 1448
failed by rank: 88
failed by posdef: 0
type [4, 5, 5, 6] cases: 384
failed by edges: 342
failed by rank: 42
failed by posdef: 0
type [3, 5, 5, 7] cases: 640
failed by edges: 614
failed by rank: 26
failed by posdef: 0
type [3, 3, 4, 10] cases: 1920
failed by edges: 1846
failed by rank: 74
failed by posdef: 0
type [4, 4, 5, 7] cases: 640
failed by edges: 584
failed by rank: 56
failed by posdef: 0
type [3, 4, 5, 8] cases: 768
failed by edges: 722
failed by rank: 46
failed by posdef: 0
type [3, 5, 6, 6] cases: 576
failed by edges: 528
failed by rank: 48
failed by posdef: 0
type [3, 3, 5, 9] cases: 1536
failed by edges: 1488
failed by rank: 48
failed by posdef: 0
type [4, 4, 6, 6] cases: 576
failed by edges: 483
failed by rank: 93
failed by posdef: 0
type [3, 4, 6, 7] cases: 960
failed by edges: 896
failed by rank: 64
failed by posdef: 0
type [3, 3, 6, 8] cases: 1152
failed by edges: 1090
failed by rank: 62
failed by posdef: 0
type [3, 3, 7, 7] cases: 1600
failed by edges: 1558
failed by rank: 42
failed by posdef: 0
type [3, 3, 3, 3, 8] cases: 3072
failed by edges: 3014
failed by rank: 58

failed by posdef: 0
type [4, 4, 4, 4, 4] cases: 1024
through: [4, 4, 4, 4, 4] [[0, 1, 0, 1], [0, 1, 0, 1], [0, 1, 0, 1], [0, 1, 0, 1], [0, 1, 0, 1]] 16 0
through: [4, 4, 4, 4, 4] [[0, 0, 1, 1], [0, 1, 0, 1], [0, 1, 0, 1], [0, 1, 0, 1], [0, 1, 0, 1]] 16 0
through: [4, 4, 4, 4, 4] [[0, 1, 0, 1], [0, 0, 1, 1], [0, 1, 0, 1], [0, 1, 0, 1], [0, 1, 0, 1]] 16 0
through: [4, 4, 4, 4, 4] [[0, 0, 1, 1], [0, 0, 1, 1], [0, 1, 0, 1], [0, 1, 0, 1], [0, 1, 0, 1]] 16 0
through: [4, 4, 4, 4, 4] [[0, 1, 0, 1], [0, 1, 0, 1], [0, 0, 1, 1], [0, 1, 0, 1], [0, 1, 0, 1]] 16 0
through: [4, 4, 4, 4, 4] [[0, 0, 1, 1], [0, 1, 0, 1], [0, 0, 1, 1], [0, 1, 0, 1], [0, 1, 0, 1]] 16 0
through: [4, 4, 4, 4, 4] [[0, 1, 0, 1], [0, 0, 1, 1], [0, 0, 1, 1], [0, 1, 0, 1], [0, 1, 0, 1]] 16 0
through: [4, 4, 4, 4, 4] [[0, 1, 0, 1], [0, 1, 0, 1], [0, 1, 0, 1], [0, 0, 1, 1], [0, 1, 0, 1]] 16 0
through: [4, 4, 4, 4, 4] [[0, 0, 1, 1], [0, 1, 0, 1], [0, 1, 0, 1], [0, 0, 1, 1], [0, 1, 0, 1]] 16 0
through: [4, 4, 4, 4, 4] [[0, 1, 0, 1], [0, 0, 1, 1], [0, 1, 0, 1], [0, 0, 1, 1], [0, 1, 0, 1]] 16 0
through: [4, 4, 4, 4, 4] [[0, 1, 0, 1], [0, 1, 0, 1], [0, 0, 1, 1], [0, 0, 1, 1], [0, 1, 0, 1]] 16 0
through: [4, 4, 4, 4, 4] [[0, 1, 0, 1], [0, 1, 0, 1], [0, 1, 0, 1], [0, 1, 0, 1], [0, 0, 1, 1]] 16 0
through: [4, 4, 4, 4, 4] [[0, 0, 1, 1], [0, 1, 0, 1], [0, 1, 0, 1], [0, 1, 0, 1], [0, 0, 1, 1]] 16 0
through: [4, 4, 4, 4, 4] [[0, 1, 0, 1], [0, 0, 1, 1], [0, 1, 0, 1], [0, 1, 0, 1], [0, 0, 1, 1]] 16 0
through: [4, 4, 4, 4, 4] [[0, 1, 0, 1], [0, 1, 0, 1], [0, 0, 1, 1], [0, 1, 0, 1], [0, 0, 1, 1]] 16 0
through: [4, 4, 4, 4, 4] [[0, 1, 0, 1], [0, 1, 0, 1], [0, 1, 0, 1], [0, 0, 1, 1], [0, 0, 1, 1]] 16 0
failed by edges: 918
failed by rank: 80
failed by posdef: 10
type [3, 4, 4, 4, 5] cases: 1024
failed by edges: 974
failed by rank: 50
failed by posdef: 0
type [3, 3, 4, 4, 6] cases: 1536
failed by edges: 1470
failed by rank: 66
failed by posdef: 0
type [3, 3, 3, 4, 7] cases: 2560
failed by edges: 2512
failed by rank: 48
failed by posdef: 0
type [3, 3, 4, 5, 5] cases: 1024
failed by edges: 996
failed by rank: 28
failed by posdef: 0
type [3, 3, 3, 5, 6] cases: 1536
failed by edges: 1494
failed by rank: 42
failed by posdef: 0
type [3, 3, 3, 3, 3, 5] cases: 4096
failed by edges: 4076
failed by rank: 0
failed by posdef: 20
type [3, 3, 3, 3, 4, 4] cases: 4096
failed by edges: 4038
failed by rank: 0
failed by posdef: 58
17

17
17
17

